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PID Control Theory
Introduction
PID control is a very simple and 
powerful method for controlling 
a variety of processes, including 
temperature.

Suppose you have a Process (e.g. 
a temperature chamber with heater 
and compressor) which produces a 
measurable Process Variable y (e.g. 
the temperature measurement in the 
chamber). The Process is controlled 
via a drive signal u that comes from 
the controller, and your goal is to 
match the PV to a target value, also 
known as the Setpoint, or ysp. (Figure 
1.1)

The acronym PID stands for 
“Proportional, Integral, and 
Derivative”. Each cycle, the PID 
controller calculates the next output 
value using the measured error 
between the Setpoint and measured 
Process Variable, as shown in the 
above diagram. It computes the 
output value as the sum of the 
following three values:

1. Proportional term: take the error 
and multiply it by a constant Kp

2. Integral term: take the cumulative 
total error and multiply it by a 
constant Ki

3. Derivative term: take the rate of 
change in error and multiply it by a 
constant Kd

Finally, it adds all three of the above 
values together to produce the final 
output u for that cycle

The above description can be aptly 
described in the following formula:

where:
 ● u(t) is the drive coming from the 
Controller, into the Process, at time 

t

 ● e(t) = ysp(t) - y(t) is the difference 
between the setpoint and measured 
process variable at time t

 ● Kp, Ki, Kd are the respective P, I, 
and D constants

Note: Crystal Instruments products 
will use a slightly different 
formulation for these three constants, 
as will be discussed below.

The performance of the PID 
algorithm depends heavily on 
whether appropriate PID parameters 
have been selected. If the PID 
constants are a good fit for the 
process, the control will converge 
smoothly. On the other hand, if the 
PID constants are chosen poorly, the 
system may oscillate or destabilize 
and lose control.

PID constants are ultimately 
determined by the user and can be 
refined through a combination of 
tuning algorithms and trial / error. 
Two popular methods for PID tuning 
are the Ziegler-Nichols and Åström-
Hägglund tuning methods.

Using the Alternate PID 
Formulation
There are two common formulas used 
to describe the PID control algorithm. 
The first formula was already 
described in the above section.

However, for the remainder of this 

text, we use a second framing of the 
PID equation:

where:

There are several reasons for using 
this alternate formulation:
1. This allows for the constants Ti 

and Td to be expressed in units of 
time (in fact, these constants are 
sometimes known as the “Integral 
time” and “Derivative time”, 
respectively)

2. Kp can be interpreted as the overall 
“gain” of the PID controller, with 
increases or decreases to Kp being 
fairly applied to the integral and 
derivative terms as well

3. The Ziegler-Nichols and Åström-
Hägglund tuning methods both 
use this form for their parameter 
recommendations

Note: the Ti (integral time) constant 
is in the denominator of the formula. 
This means that increasing Ti will 
decrease the integral contribution 
to the PID controller output, while 
decreasing Ti will increase the 
integral contribution.

Discrete Form
When digital controllers are used 
for PID control, the incoming data 

Figure 1.1
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is discrete and sampled, rather than 
continuous. Suppose the incoming 
Process Variable y is sampled at 
intervals of T seconds:

y[k] = y(kT)

The PID formula is then converted to 
the following form:

 ● e[k] = ysp [k] - y[k]

 ● T is the sampling interval (i.e. the 
length of time between consecutive 
samples)

Note that the integral and derivative 
terms are multiplied and divided by 
the sampling interval T, respectively.

PID Components
To help understand each component 
of the PID algorithm, we will 
simulate each control aspect on a fake 
temperature chamber. This chamber 
is based off open-loop data from a 
real temperature chamber and written 
using Python.

Proportional Control
The simplest part of PID control is 
the Proportional component. Suppose 
you began with just a Proportional 
controller:

u[k] = Kp e[k] = Kp (ysp [k] - y[k])

This control adjusts the existing 
output in proportion to the current 
error measured. Below are some 
simulated tests with various Kp values 
(0.1, 0.5, 0.7): (Figure 2.1)

Insights and takeaways:
1. A higher Kp will help the Process 

Variable reach the Setpoint at a 
quicker pace, as shown comparing 
the first two plots

2. Too high of a Kp will result in 
uncontrollable oscillations, as 
shown in the last plot

3. Even with a balanced Kp constant, 
there is always some static error, 
which will depend on the process 
being controlled.

Integral Control
The purpose of introducing the 
Integral component is to address the 
static error in the process.

Static error can be explained with the 
example of controlling a helicopter’s 
elevation. Suppose you could 
control the height of a helicopter by 
controlling the rotor speed. A faster 
rotor speed will help the helicopter 
rise, while a slower (or zero) rotor 
speed will leave the helicopter to fall 
towards the ground.

If you were to only use Proportional 
control, then every time the helicopter 
reaches the Setpoint elevation, it 

would simply stop spinning its rotor 
since the error between Setpoint and 
Process Variable is zero! Once the 
rotor speed is zeroed, the helicopter 
would fall towards the ground, 
prompting the rotor to restart. In 
effect, the helicopter will never quite 
reach the Setpoint and instead hover 
at a slightly lower elevation below the 
Setpoint.

The purpose for integral control 
is to eliminate this static error by 
guaranteeing a constant component 
of output in the e=0 scenario, while 
adding the Proportional control on 
top. In the helicopter analogy, the 
integral component will settle on the 
perfect amount of rotor speed needed 
to counteract the standing effect of 
gravity.

The combination of Proportional 

Figure 2.1

Figure 3.1



and Integral control is known as 
PI control. Below, we show the 
effects of PI control in our chamber 
simulation: (Figure 3.1)

In the above diagrams, the first 
plot shows Proportional control 
without any Integral component – as 
mentioned earlier, the static error 
cannot be eliminated.

In the second plot, Integral control 
is added (Ti=20), but the Integral 
component is too strong for the 
delayed temperature chamber 
process, resulting in oscillations.

In the third plot, Integral control is 
dialed back to a lower level (Ti=40), 
resulting in convergence upon the 
Setpoint.

For more insight, below is a matrix 
of various Proportional-Integral 
simulation combinations to better 
illustrate the effects of PI control: 
(Figure 3.2)

Insights and takeaways:
1. Increasing either the Proportional 

or Integral component will help the 
Process Variable converge more 
quickly to the Setpoint, with the 
risk of oscillations if increased too 
much

 ○ Reminder: increasing the 
Integral component is done by 
lowering the Ti constant

2. Increasing the Proportional 
component means the error sum 
grows less quickly, because there is 
less time to accumulate error 

Derivative Control
The final component of PID control 
is the Derivative component, which 
is a multiplier based on the rate of 
change in the error. The purpose of 
Derivative control is to provide a 
“dampening” effect that can help 
limit overshoot and converge more 
quickly upon the Setpoint. It predicts 
the future error and compensates the 

output ahead of time.

The simulations below show the 
dampening effects of the Derivative 
component. In general, adding 
Derivative control will reduce the 
amount of overshoot. However, 
after a certain point, increasing 
the Derivative no longer improves 
the overshoot and instead creates 
oscillations: (Figure 4.1)

Anti-Integral Windup
One of the common pitfalls with 
PID control is dealing with Integral 
windup. Windup is the effect of 
accumulating too great of an error 
sum when the Process Variable 
is approaching the Setpoint from 
far away. It results in a significant 
amount of overshoot and inefficient 
control.

Note that the Integral component 
is the only part of the PID control 
process with long-term memory. 
While the Proportional and 
Derivative components help react to 
live errors, the Integral component 
is the only factor for improving the 
control quality over time.

The Necessity of Overshoot
The error sum is ultimately the sum 
of the gap between Process Variable 
and Setpoint over time. Given that 
the Setpoint is pre-determined, the 
controller can only affect the error 
sum by moving the Process Variable 
itself. If the controller moves the 
Process Variable past the Setpoint 
onto the other side, this is called 
“overshoot”.

Why is overshoot necessary? As 
long as the Process Variable is on 
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Figure 3.2

Figure 4.1
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one side of the Setpoint (greater 
than or less than), the error sum will 
either be monotonically decreasing 
or increasing. In almost all cases, 
the error sum will exceed the “ideal” 
error sum in one direction, which 
means the Process Variable must 
overshoot and cross over the Setpoint 
for the error sum to readjust in the 
other direction.

Thus, some overshoot in either 
direction is almost always inevitable. 
The PID variables are only here to 
help reduce the severity of overshoot, 
rather than remove it entirely. A 
successful PID control pattern may 
continue by overshooting back in the 
other direction, with each successive 
oscillation decreasing in amplitude 
until converging on the Setpoint.

Notably, the amount of overshoot 
depends not only on the PID values, 
but also on the initial conditions. If 
the Process Variable starts further 
away from the Setpoint, the overshoot 
will be greater because there is more 
time and runway for the accumulated 
sum to grow.

Consider the simulations below using 
the same PID parameters across runs 
starting at different initial conditions. 
Observe how the overshoot grows 
as we start further away from the 
Setpoint. (Figure 5.1)

Saturation and Windup
The concept of windup is an 
exaggerated version of the above 

phenomenon where starting 
further from the Setpoint results in 
increased overshoot due to a longer 
accumulation period.

Consider the simulations below 
between a simple PID controller (left) 
and a PID controller with anti-windup 
logic (right). This time, the initial 
conditions for the Process Variable 
are placed further out to 15 degrees 
above the Setpoint. (Figure 6.1)

The extreme overshoot from the 
simple PID controller (left) is a result 
of windup with an overgrown error 
sum. During the initial descent of the 
control, the accumulated error grows 
at an overly fast pace because the 
Process Variable is so far from the 
Setpoint.

Only until the Process Variable 
crosses the Setpoint (as marked 
by the gray dotted line) does the 
accumulated error begin correcting 

back towards neutral. However, due 
to the significant windup accumulated 
earlier, it takes more time to converge 
back to the “ideal” accumulated error 
value.

Integral windup can be combatted 
in a variety of ways. Usually, anti-
windup schemes will do something 
related to limiting the growth of the 
accumulated error sum.

For instance, the PID controller 
depicted on the right uses a simple 
rule where the Integral error 
accumulation is disabled when the 
output is saturated (i.e. the output 
exceeds its maximum or minimum 
limits).

Common anti-windup measures 
include:
1. Disabling the error sum 

accumulation when the controller 
output is saturated

Figure 5.1

Figure 6.1
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2. Disabling the error sum 
accumulation until the Process 
Variable is within a certain range 
(known as the “controllable region) 
of the Setpoint

3. Resetting the accumulated error 
sum to zero (or another preset 
value from previous test runs) 
when the Process Variable first 
crosses the Setpoint

Tuning
The most important part of 
configuring the PID controller is 
selecting the PID constants Kp, Ti, Td.  
This process is known as “tuning” the 
PID controller.

Ziegler-Nichols
The Ziegler-Nichols tuning method 
is one of the most famous ways to 
experimentally tune a PID controller. 
The basic algorithm is as follows:

1. Turn off the Integral and Derivative 
components for the controller; only 
use Proportional control.

2. Slowly increase the gain (i.e. Kp, 
the Proportion constant) until the 
process starts to oscillate

 ○ This final gain value is known 
as the ultimate gain, or Ku

 ○ The period of oscillation is the 
ultimate period, or Tu

3. Use the following table to derive 
the PID variables (Table 1)

To put this into practice, we first run 
simulations on our fake controller. We 
start with a low Kp value and steadily 
increase it until we see constant 
oscillations. (Figure 7.1)

From the test runs above, the control 
stops converging and starts oscillating 
steadily somewhere around Kp=0.65 
(it does not need to be too precise, 
as this entire process is based on 
heuristics.)

The measured period for the 

oscillations is about 80 seconds. This 
gives us the following:

 ● Ultimate gain Ku=0.65

 ● Ultimate period Tu=80

We can then derive PID values using 
the formula table and overlay the 
simulations: (Figure 7.2)

Oddly enough, the “No Overshoot” 

or “Moderate Overshoot” PID 
variables perform more poorly than 
the classical Ziegler-Nichols values, 
at least for this simulated temperature 
chamber. This demonstrates how all 
these constants are still heuristics at 
best, and will may require manual 
adjustment afterwards.

Åström-Hägglund
The Åström-Hägglund relay tuning 

Controller Kp Ti Td

P Ku/2

PI Ku/2.5 Tu/1.25

PID 0.6Ku Tu/2 Tu/8

Pessen Integral Rule 0.7Ku 0.4Tu 0.15Tu

Moderate overshoot Ku/3 Tu/2 Tu/3

No overshoot Ku/5 Tu/2 Tu/3

Table 1

Figure 7.1

Figure 7.2
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method is another popular method 
used to tune PID controllers. The 
basic algorithm is as follows:

1. Select two opposing control output 
values (e.g. 100% heating vs. 
100% cooling; 10% heating vs 
10% cooling)

2. Oscillate the Process Variable 
around the Setpoint by toggling 
between the two output values.  
More precisely:

 ○ Initially start with the output 
value that takes the Process 
Variable to the Setpoint

 ○ Every time the Process Variable 
crosses the Setpoint, switch to 
the other output value.

3. Continue until the Process Variable 
has reached stable oscillation about 
the Setpoint

4. Calculate the Ultimate Gain Ku = 
4d/πa, where d is the amplitude 
of control output oscillations, and 
a is the amplitude of the Process 
Variable oscillations

5. Measure the Ultimate Period Tu as 
the period in the oscillations

6. Use the Ziegler-Nichols formulas 
in the earlier section to compute 
the PID variables

To put this into practice, see the 
following simulation where we 
oscillate between 100% heating 
and cooling every time the Process 
Variable crosses the Setpoint. (Figure 
8.1)

Measurements from the simulation 
data indicate the amplitude of the 
Process Variable oscillation is 
approximately 3.95 degrees, giving us 
an Ultimate Gain of:

Meanwhile, the period of the 
oscillations is measured to be 
approximately

Tu=80

These results are similar to those 
derived from the Ziegler-Nichols 
method, at least for this particular 
simulation chamber. Especially 
for chamber tuning, the Åström-
Hägglund relay tuning method is 
preferred over Ziegler-Nichols 
because it can guarantee oscillations 
with very few preparations needed.

Note: it is not necessary to oscillate 
between the two most extreme output 
values as in this example (between 
100% heating and 100% cooling).  
Relay tuning can be done between 
any two output values, so long as 
the Process Variable can be driven in 
both directions with those two output 
values (e.g. 50% heating vs. 50% 
cooling, or 75% heating and 25% 
cooling.) The measured Ultimate 
Gain and Ultimate Period may 
vary slightly depending on system 
nonlinearity.

Applications in 
Crystal Instruments 
Software
The above PID theory principles 
are used in the Crystal Instruments 
Spider controller for temperature 
control.

PID Formula
In the CI software user interface, the 
PID constants Kp,Ti,Td are represented 
in the following form:

 ● u[k], the controller output to 
the chamber. Expressed as a 
percentage, i.e. a number between 
-1 and 1

 ● e[k] = ysp [k]-y[k], the error, 
calculated as the difference 
between measured temperature 
(Process Variable) and target 
temperature (Setpoint)

 ● T is the PID output update interval 
at 2 seconds (i.e. the length of time 
between consecutive samples). 
Depending on software version, 
this length is usually between 0.5 
and 2 seconds.

Controller Output
The controller output, u[k], is a 
percentage and therefore limited 
between the range of -1 and 1. If the 
calculated value exceeds that range, 
then it will be truncated to -1 or 1. A 
positive controller output means the 
heater is used. A negative controller 
output means the compressor / cooler 
is used.

This percentage is the usage rate for 
the chamber’s compressor or heater 

Figure 8.1
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over the next PID calculation period 
(2 seconds for heater, 14 seconds for 
compressor). These period lengths 
can be configured to the user’s 
liking, but the compressor period is 
usually set to 14 seconds or longer to 
preserve the mechanical lifetime of 
the compressor.

For example, if u[k]=0.75, then 
the heater will be running 75% of 
the time for the next 2 seconds (1.5 
seconds on, then 0.5 seconds off.)

If u[k]=-0.25, then the compressor 
will be running 25% of the time 
for the next period of 14 seconds 
(3.5 seconds on, then 10.5 seconds 
off). Since it is costly to turn on/
off the compressor, the compressors 
are instead designed to use the heat 
bypass valve when turned “off”.

PID Tuning
The PID constants are tuned using 
the Åström-Hägglund relay tuning 
method. By default, the output will 
oscillate between 100% heating and 
100% cooling about a setpoint, but 
it is also possible to configure the 
“amplitude” of this output oscillation, 
such as 5% heating vs. 5% cooling.

Due to the nonlinearity in 
the temperature chamber, we 
recommended selecting an amplitude 
close to the practical output values 
used when holding at a steady 
temperature. For instance, in practice, 
the compressor at 5% usage has a 
stronger cooling rate than 5% of the 
compressor’s cooling rate at 100% 
usage.

Anti-Integral Windup
The CI Spider controller uses a 
simple measure for preventing 
integral windup:

 ● The “controllable region” is 
defined as anything within ±4° C of 
the Setpoint. The default value of 
±4° C be updated in user interface 
settings to the user’s preference.

 ● If the Process Variable is outside 
the controllable region, the 
control output will be 100% in the 
direction of the Setpoint. The error 
sum is not updated

 ● If the Process Variable is within the 
controllable region, then the full 
PID control is in effect with the 
error sum being updated. 
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