
Scott Zhuge - Software Manager
 September 2020 | © Crystal Instruments Corporation

PID Control Theory
Application Note 071

Contents
PID Control Theory 3

Introduction 3

Using the Alternate PID Formulation 3

Discrete Form 3

PID Components 4

 ● Proportional Control 4

 ● Integral Control 4

 ● Derivative Control 5

Anti-Integral Windup 5

 ● The Necessity of Overshoot 5

 ● Saturation and Windup 6

Tuning 7

 ● Ziegler-Nichols 7

 ● Åström-Hägglund 7

Applications in Crystal Instruments Software 8

PID Formula 8

 ● Controller Output 8

 ● PID Tuning 9

Anti-Integral Windup 9

PAGE 2 | CRYSTAL INSTRUMENTS

PAGE 3 | CRYSTAL INSTRUMENTS

PID Control Theory
Introduction
PID control is a very simple and
powerful method for controlling
a variety of processes, including
temperature.

Suppose you have a Process (e.g.
a temperature chamber with heater
and compressor) which produces a
measurable Process Variable y (e.g.
the temperature measurement in the
chamber). The Process is controlled
via a drive signal u that comes from
the controller, and your goal is to
match the PV to a target value, also
known as the Setpoint, or ysp. (Figure
1.1)

The acronym PID stands for
“Proportional, Integral, and
Derivative”. Each cycle, the PID
controller calculates the next output
value using the measured error
between the Setpoint and measured
Process Variable, as shown in the
above diagram. It computes the
output value as the sum of the
following three values:

1. Proportional term: take the error
and multiply it by a constant Kp

2. Integral term: take the cumulative
total error and multiply it by a
constant Ki

3. Derivative term: take the rate of
change in error and multiply it by a
constant Kd

Finally, it adds all three of the above
values together to produce the final
output u for that cycle

The above description can be aptly
described in the following formula:

where:
 ● u(t) is the drive coming from the
Controller, into the Process, at time

t

 ● e(t) = ysp(t) - y(t) is the difference
between the setpoint and measured
process variable at time t

 ● Kp, Ki, Kd are the respective P, I,
and D constants

Note: Crystal Instruments products
will use a slightly different
formulation for these three constants,
as will be discussed below.

The performance of the PID
algorithm depends heavily on
whether appropriate PID parameters
have been selected. If the PID
constants are a good fit for the
process, the control will converge
smoothly. On the other hand, if the
PID constants are chosen poorly, the
system may oscillate or destabilize
and lose control.

PID constants are ultimately
determined by the user and can be
refined through a combination of
tuning algorithms and trial / error.
Two popular methods for PID tuning
are the Ziegler-Nichols and Åström-
Hägglund tuning methods.

Using the Alternate PID
Formulation
There are two common formulas used
to describe the PID control algorithm.
The first formula was already
described in the above section.

However, for the remainder of this

text, we use a second framing of the
PID equation:

where:

There are several reasons for using
this alternate formulation:
1. This allows for the constants Ti

and Td to be expressed in units of
time (in fact, these constants are
sometimes known as the “Integral
time” and “Derivative time”,
respectively)

2. Kp can be interpreted as the overall
“gain” of the PID controller, with
increases or decreases to Kp being
fairly applied to the integral and
derivative terms as well

3. The Ziegler-Nichols and Åström-
Hägglund tuning methods both
use this form for their parameter
recommendations

Note: the Ti (integral time) constant
is in the denominator of the formula.
This means that increasing Ti will
decrease the integral contribution
to the PID controller output, while
decreasing Ti will increase the
integral contribution.

Discrete Form
When digital controllers are used
for PID control, the incoming data

Figure 1.1

PAGE 4 | CRYSTAL INSTRUMENTS

is discrete and sampled, rather than
continuous. Suppose the incoming
Process Variable y is sampled at
intervals of T seconds:

y[k] = y(kT)

The PID formula is then converted to
the following form:

 ● e[k] = ysp [k] - y[k]

 ● T is the sampling interval (i.e. the
length of time between consecutive
samples)

Note that the integral and derivative
terms are multiplied and divided by
the sampling interval T, respectively.

PID Components
To help understand each component
of the PID algorithm, we will
simulate each control aspect on a fake
temperature chamber. This chamber
is based off open-loop data from a
real temperature chamber and written
using Python.

Proportional Control
The simplest part of PID control is
the Proportional component. Suppose
you began with just a Proportional
controller:

u[k] = Kp e[k] = Kp (ysp [k] - y[k])

This control adjusts the existing
output in proportion to the current
error measured. Below are some
simulated tests with various Kp values
(0.1, 0.5, 0.7): (Figure 2.1)

Insights and takeaways:
1. A higher Kp will help the Process

Variable reach the Setpoint at a
quicker pace, as shown comparing
the first two plots

2. Too high of a Kp will result in
uncontrollable oscillations, as
shown in the last plot

3. Even with a balanced Kp constant,
there is always some static error,
which will depend on the process
being controlled.

Integral Control
The purpose of introducing the
Integral component is to address the
static error in the process.

Static error can be explained with the
example of controlling a helicopter’s
elevation. Suppose you could
control the height of a helicopter by
controlling the rotor speed. A faster
rotor speed will help the helicopter
rise, while a slower (or zero) rotor
speed will leave the helicopter to fall
towards the ground.

If you were to only use Proportional
control, then every time the helicopter
reaches the Setpoint elevation, it

would simply stop spinning its rotor
since the error between Setpoint and
Process Variable is zero! Once the
rotor speed is zeroed, the helicopter
would fall towards the ground,
prompting the rotor to restart. In
effect, the helicopter will never quite
reach the Setpoint and instead hover
at a slightly lower elevation below the
Setpoint.

The purpose for integral control
is to eliminate this static error by
guaranteeing a constant component
of output in the e=0 scenario, while
adding the Proportional control on
top. In the helicopter analogy, the
integral component will settle on the
perfect amount of rotor speed needed
to counteract the standing effect of
gravity.

The combination of Proportional

Figure 2.1

Figure 3.1

and Integral control is known as
PI control. Below, we show the
effects of PI control in our chamber
simulation: (Figure 3.1)

In the above diagrams, the first
plot shows Proportional control
without any Integral component – as
mentioned earlier, the static error
cannot be eliminated.

In the second plot, Integral control
is added (Ti=20), but the Integral
component is too strong for the
delayed temperature chamber
process, resulting in oscillations.

In the third plot, Integral control is
dialed back to a lower level (Ti=40),
resulting in convergence upon the
Setpoint.

For more insight, below is a matrix
of various Proportional-Integral
simulation combinations to better
illustrate the effects of PI control:
(Figure 3.2)

Insights and takeaways:
1. Increasing either the Proportional

or Integral component will help the
Process Variable converge more
quickly to the Setpoint, with the
risk of oscillations if increased too
much

 ○ Reminder: increasing the
Integral component is done by
lowering the Ti constant

2. Increasing the Proportional
component means the error sum
grows less quickly, because there is
less time to accumulate error

Derivative Control
The final component of PID control
is the Derivative component, which
is a multiplier based on the rate of
change in the error. The purpose of
Derivative control is to provide a
“dampening” effect that can help
limit overshoot and converge more
quickly upon the Setpoint. It predicts
the future error and compensates the

output ahead of time.

The simulations below show the
dampening effects of the Derivative
component. In general, adding
Derivative control will reduce the
amount of overshoot. However,
after a certain point, increasing
the Derivative no longer improves
the overshoot and instead creates
oscillations: (Figure 4.1)

Anti-Integral Windup
One of the common pitfalls with
PID control is dealing with Integral
windup. Windup is the effect of
accumulating too great of an error
sum when the Process Variable
is approaching the Setpoint from
far away. It results in a significant
amount of overshoot and inefficient
control.

Note that the Integral component
is the only part of the PID control
process with long-term memory.
While the Proportional and
Derivative components help react to
live errors, the Integral component
is the only factor for improving the
control quality over time.

The Necessity of Overshoot
The error sum is ultimately the sum
of the gap between Process Variable
and Setpoint over time. Given that
the Setpoint is pre-determined, the
controller can only affect the error
sum by moving the Process Variable
itself. If the controller moves the
Process Variable past the Setpoint
onto the other side, this is called
“overshoot”.

Why is overshoot necessary? As
long as the Process Variable is on

PAGE 5 | CRYSTAL INSTRUMENTS

Figure 3.2

Figure 4.1

PAGE 6 | CRYSTAL INSTRUMENTS

one side of the Setpoint (greater
than or less than), the error sum will
either be monotonically decreasing
or increasing. In almost all cases,
the error sum will exceed the “ideal”
error sum in one direction, which
means the Process Variable must
overshoot and cross over the Setpoint
for the error sum to readjust in the
other direction.

Thus, some overshoot in either
direction is almost always inevitable.
The PID variables are only here to
help reduce the severity of overshoot,
rather than remove it entirely. A
successful PID control pattern may
continue by overshooting back in the
other direction, with each successive
oscillation decreasing in amplitude
until converging on the Setpoint.

Notably, the amount of overshoot
depends not only on the PID values,
but also on the initial conditions. If
the Process Variable starts further
away from the Setpoint, the overshoot
will be greater because there is more
time and runway for the accumulated
sum to grow.

Consider the simulations below using
the same PID parameters across runs
starting at different initial conditions.
Observe how the overshoot grows
as we start further away from the
Setpoint. (Figure 5.1)

Saturation and Windup
The concept of windup is an
exaggerated version of the above

phenomenon where starting
further from the Setpoint results in
increased overshoot due to a longer
accumulation period.

Consider the simulations below
between a simple PID controller (left)
and a PID controller with anti-windup
logic (right). This time, the initial
conditions for the Process Variable
are placed further out to 15 degrees
above the Setpoint. (Figure 6.1)

The extreme overshoot from the
simple PID controller (left) is a result
of windup with an overgrown error
sum. During the initial descent of the
control, the accumulated error grows
at an overly fast pace because the
Process Variable is so far from the
Setpoint.

Only until the Process Variable
crosses the Setpoint (as marked
by the gray dotted line) does the
accumulated error begin correcting

back towards neutral. However, due
to the significant windup accumulated
earlier, it takes more time to converge
back to the “ideal” accumulated error
value.

Integral windup can be combatted
in a variety of ways. Usually, anti-
windup schemes will do something
related to limiting the growth of the
accumulated error sum.

For instance, the PID controller
depicted on the right uses a simple
rule where the Integral error
accumulation is disabled when the
output is saturated (i.e. the output
exceeds its maximum or minimum
limits).

Common anti-windup measures
include:
1. Disabling the error sum

accumulation when the controller
output is saturated

Figure 5.1

Figure 6.1

PAGE 7 | CRYSTAL INSTRUMENTS

2. Disabling the error sum
accumulation until the Process
Variable is within a certain range
(known as the “controllable region)
of the Setpoint

3. Resetting the accumulated error
sum to zero (or another preset
value from previous test runs)
when the Process Variable first
crosses the Setpoint

Tuning
The most important part of
configuring the PID controller is
selecting the PID constants Kp, Ti, Td.
This process is known as “tuning” the
PID controller.

Ziegler-Nichols
The Ziegler-Nichols tuning method
is one of the most famous ways to
experimentally tune a PID controller.
The basic algorithm is as follows:

1. Turn off the Integral and Derivative
components for the controller; only
use Proportional control.

2. Slowly increase the gain (i.e. Kp,
the Proportion constant) until the
process starts to oscillate

 ○ This final gain value is known
as the ultimate gain, or Ku

 ○ The period of oscillation is the
ultimate period, or Tu

3. Use the following table to derive
the PID variables (Table 1)

To put this into practice, we first run
simulations on our fake controller. We
start with a low Kp value and steadily
increase it until we see constant
oscillations. (Figure 7.1)

From the test runs above, the control
stops converging and starts oscillating
steadily somewhere around Kp=0.65
(it does not need to be too precise,
as this entire process is based on
heuristics.)

The measured period for the

oscillations is about 80 seconds. This
gives us the following:

 ● Ultimate gain Ku=0.65

 ● Ultimate period Tu=80

We can then derive PID values using
the formula table and overlay the
simulations: (Figure 7.2)

Oddly enough, the “No Overshoot”

or “Moderate Overshoot” PID
variables perform more poorly than
the classical Ziegler-Nichols values,
at least for this simulated temperature
chamber. This demonstrates how all
these constants are still heuristics at
best, and will may require manual
adjustment afterwards.

Åström-Hägglund
The Åström-Hägglund relay tuning

Controller Kp Ti Td

P Ku/2

PI Ku/2.5 Tu/1.25

PID 0.6Ku Tu/2 Tu/8

Pessen Integral Rule 0.7Ku 0.4Tu 0.15Tu

Moderate overshoot Ku/3 Tu/2 Tu/3

No overshoot Ku/5 Tu/2 Tu/3

Table 1

Figure 7.1

Figure 7.2

PAGE 8 | CRYSTAL INSTRUMENTS

method is another popular method
used to tune PID controllers. The
basic algorithm is as follows:

1. Select two opposing control output
values (e.g. 100% heating vs.
100% cooling; 10% heating vs
10% cooling)

2. Oscillate the Process Variable
around the Setpoint by toggling
between the two output values.
More precisely:

 ○ Initially start with the output
value that takes the Process
Variable to the Setpoint

 ○ Every time the Process Variable
crosses the Setpoint, switch to
the other output value.

3. Continue until the Process Variable
has reached stable oscillation about
the Setpoint

4. Calculate the Ultimate Gain Ku =
4d/πa, where d is the amplitude
of control output oscillations, and
a is the amplitude of the Process
Variable oscillations

5. Measure the Ultimate Period Tu as
the period in the oscillations

6. Use the Ziegler-Nichols formulas
in the earlier section to compute
the PID variables

To put this into practice, see the
following simulation where we
oscillate between 100% heating
and cooling every time the Process
Variable crosses the Setpoint. (Figure
8.1)

Measurements from the simulation
data indicate the amplitude of the
Process Variable oscillation is
approximately 3.95 degrees, giving us
an Ultimate Gain of:

Meanwhile, the period of the
oscillations is measured to be
approximately

Tu=80

These results are similar to those
derived from the Ziegler-Nichols
method, at least for this particular
simulation chamber. Especially
for chamber tuning, the Åström-
Hägglund relay tuning method is
preferred over Ziegler-Nichols
because it can guarantee oscillations
with very few preparations needed.

Note: it is not necessary to oscillate
between the two most extreme output
values as in this example (between
100% heating and 100% cooling).
Relay tuning can be done between
any two output values, so long as
the Process Variable can be driven in
both directions with those two output
values (e.g. 50% heating vs. 50%
cooling, or 75% heating and 25%
cooling.) The measured Ultimate
Gain and Ultimate Period may
vary slightly depending on system
nonlinearity.

Applications in
Crystal Instruments
Software
The above PID theory principles
are used in the Crystal Instruments
Spider controller for temperature
control.

PID Formula
In the CI software user interface, the
PID constants Kp,Ti,Td are represented
in the following form:

 ● u[k], the controller output to
the chamber. Expressed as a
percentage, i.e. a number between
-1 and 1

 ● e[k] = ysp [k]-y[k], the error,
calculated as the difference
between measured temperature
(Process Variable) and target
temperature (Setpoint)

 ● T is the PID output update interval
at 2 seconds (i.e. the length of time
between consecutive samples).
Depending on software version,
this length is usually between 0.5
and 2 seconds.

Controller Output
The controller output, u[k], is a
percentage and therefore limited
between the range of -1 and 1. If the
calculated value exceeds that range,
then it will be truncated to -1 or 1. A
positive controller output means the
heater is used. A negative controller
output means the compressor / cooler
is used.

This percentage is the usage rate for
the chamber’s compressor or heater

Figure 8.1

PAGE 9 | CRYSTAL INSTRUMENTS

over the next PID calculation period
(2 seconds for heater, 14 seconds for
compressor). These period lengths
can be configured to the user’s
liking, but the compressor period is
usually set to 14 seconds or longer to
preserve the mechanical lifetime of
the compressor.

For example, if u[k]=0.75, then
the heater will be running 75% of
the time for the next 2 seconds (1.5
seconds on, then 0.5 seconds off.)

If u[k]=-0.25, then the compressor
will be running 25% of the time
for the next period of 14 seconds
(3.5 seconds on, then 10.5 seconds
off). Since it is costly to turn on/
off the compressor, the compressors
are instead designed to use the heat
bypass valve when turned “off”.

PID Tuning
The PID constants are tuned using
the Åström-Hägglund relay tuning
method. By default, the output will
oscillate between 100% heating and
100% cooling about a setpoint, but
it is also possible to configure the
“amplitude” of this output oscillation,
such as 5% heating vs. 5% cooling.

Due to the nonlinearity in
the temperature chamber, we
recommended selecting an amplitude
close to the practical output values
used when holding at a steady
temperature. For instance, in practice,
the compressor at 5% usage has a
stronger cooling rate than 5% of the
compressor’s cooling rate at 100%
usage.

Anti-Integral Windup
The CI Spider controller uses a
simple measure for preventing
integral windup:

 ● The “controllable region” is
defined as anything within ±4° C of
the Setpoint. The default value of
±4° C be updated in user interface
settings to the user’s preference.

 ● If the Process Variable is outside
the controllable region, the
control output will be 100% in the
direction of the Setpoint. The error
sum is not updated

 ● If the Process Variable is within the
controllable region, then the full
PID control is in effect with the
error sum being updated.

© 2023 Crystal Instruments Corporation. All Rights Reserved. 07/2023
Notice: This document is for informational purposes only and does not set forth any warranty, expressed or implied, concerning any equipment, equipment feature, or service offered or to be offered by Crystal
Instruments. Crystal Instruments reserves the right to make changes to this document at any time, without notice, and assumes no responsibility for its use. This informational document describes features that may
not be currently available. Contact a Crystal Instruments sales representative for information on features and product availability.

Crystal Instruments Corporation
2090 Duane Avenue

Santa Clara, CA 95054

Crystal Instruments Testing Lab
15661 Producer Lane, STE H
Huntington Beach, CA 92649

Crystal Instruments Testing Lab
1548A Roger Dale Carter Boulevard

Kannapolis, NC 28081

Phone: +1 (408) 986-8880
Fax: +1 (408) 834-7818

www.crystalinstruments.com

